
Protocols for Implementing Histogram LOB in
chord Networks

S.BhagyaRekha
Assistnat Professor, Vignana Bharathi Institute of Technology

Ghtkesar-Hyderabad
Telangana

Abstract - Peer-to-Peer networks have grown most important
now- a - days. Load balancing is the most important feature
for networks. In this paper, we provide here with Load
balancing techniques for Peer – to – Peer Networks. We
further provide here with protocols for chord networks. Here
we provide two protocols for Load Balancing techniques. Our
first protocol balances the distribution of the key address
space to nodes, which yields a load-balanced system when the
DHT maps items “randomly” into the address space. Our
second protocol aims to directly balance the distribution of
items among the nodes. This is useful when the distribution of
items in the address space cannot be randomized—for
example, if we wish to support range searches on “ordered”
keys. We give a simple protocol that balances load by moving
nodes to arbitrary locations “where they are needed.” As an
application, we use the last protocol to give an optimal
implementation of a distributed data structure for range
searches on ordered data.

Keywords – P2P Systems, Load balancing ,Chord Networks.

1. INTRODUCTION

A core problem in peer to peer systems is the distribution
of items to be stored or computations to be carried out to
the nodes that make up the system. A particular paradigm
for such allocation, known as the distributed hash table
(DHT), has become the standard approach to this problem
in research on peer-to-peer systems [7, 10, 12, 15].
An important issue in DHTs is load-balance — the even
distribution of items (or other load measures) to nodes in
the DHT. All DHTs make some effort to load balance,
generally by (i) randomizing the DHT address associated
with each item with a “good enough” hash function and (ii)
making each DHT node responsible for a balanced portion
of the DHT address space. Chord is a prototypical example
of this approach: its “random” hashing of nodes to a ring
means that each node is responsible for only a small
interval of the ring address space, while the random
mapping of items means that only a limited number of
items land in the (small) ring interval owned by any node.
This attempt to load-balance can fail in two ways. First, the
typical “random” partition of the address space among
nodes is not completely balanced. Some nodes end up with
a larger portion of the addresses and thus receive a larger
portion of the randomly distributed items.
Second, some applications may preclude the randomization
of data items’ addresses. For example, to support range
searching in a database application the items may need to
be placed in a specific order, or even at specific addresses,
on the ring. In such cases, we may find the items unevenly
distributed in address space, meaning that balancing the

address space among nodes is not adequate to balance the
distribution of items among nodes. We give protocols to
solve both of the load balancing challenges just described.
Address-Space Balancing. Current distributed hash tables
do not evenly partition the address space into which keys
get mapped; some machines get a larger portion of it. Thus,
even if keys are numerous and random, some machines
receive more than their fair share, by as much as a factor of
O(logn) times the average.
To cope with this problem, many DHTs use virtual nodes:
each real machine pretends to be several distinct machines,
each participating independently in the DHT protocol. The
machine’s load is thus determined by summing over several
virtual nodes’, creating a tight concentration of (total) load
near the average. As an example, the Chord DHT is based
upon consistent hashing [8], which requires O(logn) virtual
copies to be operated for every node.
Virtual nodes have drawbacks. Besides increased storage
requirements, they demand network bandwidth. In general,
to maintain connectivity of the network, every (virtual)
node must frequently ping its neighbors, make sure they are
still alive, and replace them with new neighbors if not.
Running multiple virtual nodes creates a multiplicative
increase in the (very valuable) network bandwidth
consumed for maintenance.
Below, we will solve this problem by arranging for each
node to activate only one of its O(logn) virtual nodes at any
given time. The node will occasionally check its inactive
virtual nodes, and may migrate to one of them if the
distribution of load in the system has changed. Since only
one virtual node is active, the real node need not pay the
original Chord protocol’s multiplicative increase in space
and bandwidth costs. As in the original Chord protocol, our
scheme gives each real node only a small number of
“legitimate” addresses on the Chord ring, preserving
Chord’s (limited) protection against address spoofing by
malicious nodes trying to disrupt the routing layer. (If each
node could choose an arbitrary address, then a malicious
node aiming to erase a particular item could take
responsibility for that item’s key and then refuse to serve
the item.)
Another nice property of this protocol is that the
“appropriate” state of the system (i.e., which virtual nodes
are active), although random, is independent of the history
of item and node arrivals and departures. This Markovian
property means that the system can be analyzed as if it
were static, with a fixed set of nodes and items; such
analysis is generally much simpler than a dynamic, history-
dependent analysis.

S.BhagyaRekha / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 149-152

www.ijcsit.com 149

Combining our load-balancing scheme with the Koorde
routing protocol [7], we get a protocol that simultaneously
offers (i) O(logn) degree per real node, (ii)
O(logn/log logn) lookup hops, and (iii) constant factor load
balance. Previous protocols could achieve any two of these
but not all 3—generally speaking, achieving (iii) required
operating O(logn) virtual nodes, which pushed the degree
to O(log2 n) and failed to achieve (i).
Item Balancing. A second load-balancing problem arises
from certain database applications. A hash table
randomizes the order of keys. This is problematic in
domains for which order matters—for example, if one
wishes to perform range searches over the data. This is one
of the reasons binary trees are useful despite the faster
lookup performance of hash tables. An order preserving
dictionary structure cannot apply a randomized (and
therefore load balancing) hash function to its keys; it must
take them as they are. Thus, even if the address space is
evenly distributed among the nodes, an uneven distribution
of the keys (e.g., all keys near 0) may lead to all load being
placed on one machine.
In our work, we develop a load balancing solution for this
problem. Unfortunately, the “limited assignments”
approach discussed for key-space load balancing does not
work in this case—it is easy to prove that if nodes can only
choose from a few addresses, then certain load balancing
tasks are beyond them. Our solution to this problem
therefore allows nodes to move to arbitrary addresses; with
this freedom we show that we can load balance an arbitrary
distribution of items, without expending much cost in
maintaining the load balance.
Our scheme works through a kind of “work stealing” in
which underloaded nodes migrate to portions of the address
space occupied by too many items. The protocol is simple
and practical, with all the complexity in its performance
analysis.
Preliminaries. We design our solutions in the context of
the Chord DHT [15] but our ideas seem applicable to a
broader range of DHT solutions. Chord uses Consistent
Hashing to assign items to nodes, achieving key-space load
balance using O(logn) virtual nodes per real node. On top
of Consistent Hashing, Chord layers a routing protocol in
which each node maintains a set of O(logn) carefully
chosen “neighbors” that it uses to route lookups in O(logn)
hops. Our modifications of Chord are essentially
modifications of the Consistent Hashing protocol assigning
items to nodes; we can inherit unchanged Chord’s neighbor
structure and routing protocol. Thus, for the remainder of
this paper, we ignore issues of routing and focus on the
address assignment problem.
In this paper, we will use the following notation.
n = number of nodes in system
N = number of items stored in system (usually N _n)
`i = number of items stored at node i
L = N/n = average (desired) load in the system
As discussed above, Chord maps items and nodes to a ring.
We represent this space by the unit interval [0,1) with the
addresses 0 and 1 are identified, so all addresses are a
number between 0 and 1.

2. ADDRESS SPACE BALANCING
We will now give a protocol that improves consistent
hashing in that every node is responsible for a O(1/n)
fraction of the address space with high probability (whp),
without use of virtual nodes. This improves space and
bandwidth usage by a logarithmic factor over traditional
consistent hashing. The protocol is dynamic, with an
insertion or deletion causing O(log logn) other nodes to
change their positions. Each node has a fixed set of O(logn)
possible positions (called “virtual nodes”); it chooses
exactly one of those virtual nodes to become active at any
time—this is the only node that it actually operates. A
node’s set of virtual nodes depends only on the node itself
(computed e.g. as hashes h(i,1),h(i,2), . . . ,h(i,c logn) of the
node-id i), making malicious attacks on the network
difficult.
Ideal state: Given any set of active virtual nodes, each
(possibly inactive) virtual node “spans” a certain range of
addresses between itself and the succeeding active virtual
node. Each real node has activated the virtual node that
spans the minimal possible (under the ordering just
defined) address.
Note that the address space spanned by one virtual node
depends on which other virtual nodes are active; that is why
the above is a local optimality condition. Our protocol
consists of the simple update rule that any node for which
the local optimality condition is not satisfied, instead
activates the virtual node that satisfies the condition.
In other words, each node occasionally determines which
of its O(logn) virtual nodes spans the smallest address, and
activates that particular virtual node. Note that computing
the “succeeding active node” for each of the virtual nodes
can be done using standard Chord lookups.
Theorem 1 The following statements are true for the above
protocol, if every node has c logn virtual addresses.
(i) For any set of nodes there is a unique ideal state.
(ii) Given any starting state, the local improvements will

eventually lead to this ideal state.
(iii) In the ideal state of a network of n nodes, whp all

neighboring pairs of nodes will be at most (2+e)/n
apart.

(iv) Upon inserting or deleting a node into an ideal state, in
expectation at most O(log logn) nodes have to change
their addresses for the system to again reach the ideal
state.

Proof Sketch: The unique ideal state can be constructed as
follows. The virtual node immediately preceding address 1
will be active, since its real-node owner has no better
choice and cannot be blocked by any other active node
from spanning address 1. That real node’s other virtual
nodes will then be out of the running for activation.
Of the remaining virtual nodes, the one most closely
preceding 1/2 will become active for the same reason, etc.
We continue in this way down the ordered list of addresses.
This greedy process clearly defines the unique ideal state,
showing (i).
Claim (ii) can be shown by arguing that every local
improvement reduces the “distance” of the current state to
the ideal state (in an appropriately chosen metric).

S.BhagyaRekha / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 149-152

www.ijcsit.com 150

 To prove (iii), recall how we constructed the ideal state for
claim (i) above by successively assigning nodes to
increasing addresses. In this process, suppose we are
considering one of the first (1−e)n addresses. Consider the
interval I of length e/n preceding this address. At least en of
the real nodes have not yet been given a place on the ring.
Among the possible cenlogn possible virtual positions of
these nodes, with high probability one will land in the
length-e/n interval I under consideration. So whp, for each
of the first (1−e)n addresses in the order, the virtual node
spanning that address will land within distance e/n
preceding the address. Since these first (1−e)/n addresses
break up the unit circle into intervals of size at most 2/n,
claim (iii) follows.
For (iv), it suffices to consider a deletion since the system
is Markovian, i.e. the deletion and addition of a given node
are symmetric and cause the same number of changes.
Whenever a node claiming an address is deleted, its
disappearance may reveal an address that some other node
decides to claim, sacrificing its current spot, which may
recursively trigger some other node to move. But each such
migration means that the moving node has left behind no
address as good as the one it is moving to claim. Note also
that only a few nodes are close enough to any vacated
address to claim it (distant ones will be shielded by some
closer active node), and thus, as the address being vacated
gets higher and higher in the order, it become less and less
likely that any node that can take it will want it. We can
show that after
O(log logn) such moves, no node assigned to a higher
address is likely to have a virtual node close to the vacated
address, so the movements stop.
We note that the above scheme is highly efficient to
implement in the Chord P2P protocol, since one has direct
access to the address of a successor. Moreover, the protocol
can also function when nodes disappear without invoking a
proper deletion protocol. By having every node
occasionally check whether they should move, the system
will eventually converge towards the ideal state.
This can be done with insignificant overhead as part of the
general maintenance protocols that have to run anyway to
update the routing information of the Chord protocol.
Related Work. Two protocols that achieve near optimal
address-space load-balancing without the use of virtual
nodes have recently been given [1, 11]. Our scheme
improves upon them in three respects.
First, in those protocols the address assigned to a node
depends on the rest of the network, i.e. the address is not
selected from a list of possible addresses that only depend
on the node itself. This makes the protocols more
vulnerable to malicious attacks. Second, in those protocols
the address assignments depend on the construction history,
making them harder to analyze. Third, their load balancing
guarantees are only shown for the “insertions only” case,
while we also handle deletions of nodes and items.

3. ITEM BALANCING
We have shown how to balance the address space, but
sometimes this is not enough. Some applications, such as
those aiming to support range-searching operations, need to

specify a particular, non-random mapping of items into the
address space. In this section, we consider a dynamic
protocol that aims to balance load for arbitrary item
distributions. To do so, we must sacrifice the previous
protocol’s restriction of each node to a small number of
virtual node locations—instead, each node is free to
migrate anywhere. This is unavoidable: if each node is
limited to a bounded number of possible locations, then for
any n nodes we can enumerate all the addresses they might
possibly occupy, take two adjacent ones, and address all the
items in between them: this assigns all the items to one
unfortunate node.
Our protocol is randomized, and relies on the underlying
P2P routing framework only insofar as it has to be able to
contact “random” nodes in the system (in the full paper we
show that this can be done even when the node distribution
is skewed by the load balancing protocol).
The protocol is the following (where e is any constant, 0 <
e < 1). Recall that each node stores the items whose
addresses fall between the node’s address and its
predecessor’s address, and that ` j denotes the load on node
j.
Item balancing: Each node i occasionally contacts another
node j at random. The nodes perform a load balancing
operation, distinguishing two cases:
Case 1: i equals j+1: In this case, i is the successor of j and
the two nodes handle address intervals next to each other.
Node j increases its address so that the (`i −` j)/2 items with
lowest addresses get reassigned from node i to node j. Both
nodes end up with load (`i+` j)/2.
Case 2: i not equals j+1: If ` j+1 > `i, then we set i := j +1
and go to case 1. Otherwise, node j moves between nodes
i−1 and i to capture half of node i’s items.
This means that node j’s items are now handled by its
former successor, node j+1.
To state the performance of the protocol, we need the
concept of a half-life [9], which is the time it takes for half
the nodes or half the items in the system to arrive or depart.
Theorem 2 If each node contacts W(logn) other random
nodes per half-life as well as whenever its own load
doubles, then the above protocol has the following
properties.
(i) With high probability,
(ii) The amortized number of items moved due to load
balancing is O(1) per item insertion or deletion, and
O(N/n) per node insertion or deletion.
The proof of this theorem relies on the use of a potential
function (some constant minus the entropy of the load
distribution) that is large when the load is unbalanced.
We show that item insertions and node departures cause
only limited increases in the potential, while our balancing
operation above causes a significant decrease in the
potential if it is large.
The traffic caused by the update queries necessary for the
protocol is sufficiently small that it can be buried within the
maintenance traffic necessary to keep the P2P network
alive. (Contacting a random node for load information only
uses a tiny message, and does not result in any data
transfers per se.) Of greater importance for practical use is

S.BhagyaRekha / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 149-152

www.ijcsit.com 151

the number of items transferred, which is optimal to within
constants in an amortized sense.
The protocol can also be used if items are replicated to
improve fault-tolerance our scheme remains optimal within
a constant factor.
The above protocol can provide load balance even for data
that cannot be hashed. In particular, given an ordered data
set, we may wish to map it to the [0,1) interval in an order-
preserving fashion.
RelatedWork. Randomized protocols for load balancing
by moving items have received much attention in the
research community. A P2P algorithm similar to ours was
studied in [13]. However, their algorithm only works when
the set of nodes and items are fixed (i.e. without insertions
or deletions), and they give no provable performance
guarantees, only experimental evaluations.
A theoretical analysis of a similar protocol was given by
Anagnostopoulos, Kirsch and Upfal [2], who also provide
several further references. In their setting, however, items
are assumed to be jobs that are executed at a fixed rate, i.e.
items disappear from nodes at a fixed rate. Moreover, they
analyze the average wait time for jobs, while we are more
interested in the total number of items moved to achieve
load balance. In recent independent work, Ganesan and
Bawa [4] consider a load balancing scheme similar to ours
and point out applications to range searches. However, their
scheme relies on being able to quickly find the least and
most loaded nodes in the system. It is not clear how to
support this operation efficiently without creating heavy
network traffic for these nodes with extreme load.
Complex queries such as range searches are also an
emerging research topic for P2P systems [5, 6]. An
efficient range search data structure was recently given [3].
However, that work does not address the issue of load
balancing the number of items per node, making the
simplifying assumption that each node stores only one
item. In that setting, the lookup times are O(logN) in terms
of the number of items N, and not in terms of the number of
nodes n. Also, O(logN) storage is used per data item,
meaning a total storage of O(N logN), which is typically
much worse than O(N +nlogn).

4 CONCLUSION
We have given several provably efficient load balancing
protocols for distributed data storage in P2P systems. Our
algorithms are simple, and easy to implement, so an
obvious next research step should be a practical evaluation
of these schemes. In addition, several concrete open
problems follow from our work. First, it might be possible
to further improve the consistent hashing scheme as
discussed at the end of section 2. Second, our range search
data structure does not easily generalize to more than one
order.

REFERENCES
[1] Micah Adler, Eran Halperin, Richard M. Karp, and Vijay V.

Vazirani. A Stochastic Process on the Hypercube with Applications
to Peer-to-Peer Networks. In Proceedings STOC, pages 575–584,
2003.

[2] Aris Anagnostopoulos, Adam Kirsch, and Eli Upfal. Stability and
Efficiency of a Random Local Load Balancing Protocol. In
Proceedings FOCS, pages 472–481, 2003.

[3] James Aspnes and Gauri Shah. Skip Graphs. In Proceedings SODA,
pages 384–393, 2003.

[4] Prasanna Ganesan and Mayank Bawa. Distributed balanced tables:
Not making a hash of it all. Technical Report 2003-71, Stanford
University, Database Group, 2003.

[5] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon T.
Loo, Scott Shenker, and Ion Stoica. Complex Queries in DHT-based
PeertoPeer Networks. In Proceedings IPTPS, pages 242–250, 2002.

[6] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau
Loo, Scott Shenker, and Ion Stoica. Querying the Internet with
PIER. In Proceedings VLDB, pages 321–332, 2003.

[7] Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
optimal Hash Table. In Proceedings IPTPS, 2003.

[8] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, and Rina Panigrahy. Consistent Hashing and Random Trees:
Tools for Relieving Hot Spots on the World Wide Web. In
Proceedings STOC, pages 654–663, 1997.

[9] David Liben-Nowell, Hari Balakrishnan, and David Karger.
Analysis of the Evolution of PeertoPeer Systems. In Proceedings
PODC, pages 233–242, 2002.

[10] Dalia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. In Proceedings PODC,
pages 183–192, 2002.

[11] Moni Naor and Udi Wieder. Novel Architectures for P2P
Applications: the Continuous-Discrete Approach. In Proceedings
SPAA, pages 50–59, 2003.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A Scalable Content-Addressable Network. In
Proceedings ACM SIGCOMM, pages 161–172, 2001.

[13] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard
Karp, and Ion Stoica. Load Balancing in Structured P2P Systems. In
Proceedings IPTPS, 2003.

[14] Matthias Ruhl. Efficient Algorithms for New ComputationalModels.
PhD thesis, Massachusetts Institute of Technology, 2003.

[15] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proceedings ACM SIGCOMM, pages 149–
160, 2001.

AUTHORS

Bhagya Rekha is currently Working at vignana Bharathi Institute of
Technology Telagana, India. E mail; bhagyarekha2001@gmail.com.

S.BhagyaRekha / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 149-152

www.ijcsit.com 152

