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Abstract - Peer-to-Peer networks have grown most important 
now- a - days. Load balancing is the most important feature 
for networks. In this paper, we provide here with Load 
balancing techniques for Peer – to – Peer Networks. We 
further provide here with protocols for chord networks.  Here 
we provide two protocols for Load Balancing techniques. Our 
first protocol balances the distribution of the key address 
space to nodes, which yields a load-balanced system when the 
DHT maps items “randomly” into the address space. Our 
second protocol aims to directly balance the distribution of 
items among the nodes. This is useful when the distribution of 
items in the address space cannot be randomized—for 
example, if we wish to support range searches on “ordered” 
keys. We give a simple protocol that balances load by moving 
nodes to arbitrary locations “where they are needed.” As an 
application, we use the last protocol to give an optimal 
implementation of a distributed data structure for range 
searches on ordered data. 

Keywords – P2P Systems, Load balancing ,Chord Networks. 

1. INTRODUCTION

A core problem in peer to peer systems is the distribution 
of items to be stored or computations to be carried out to 
the nodes that make up the system. A particular paradigm 
for such allocation, known as the distributed hash table 
(DHT), has become the standard approach to this problem 
in research on peer-to-peer systems [7, 10, 12, 15]. 
An important issue in DHTs is load-balance — the even 
distribution of items (or other load measures) to nodes in 
the DHT. All DHTs make some effort to load balance, 
generally by (i) randomizing the DHT address associated 
with each item with a “good enough” hash function and (ii) 
making each DHT node responsible for a balanced portion 
of the DHT address space. Chord is a prototypical example 
of this approach: its “random” hashing of nodes to a ring 
means that each node is responsible for only a small 
interval of the ring address space, while the random 
mapping of items means that only a limited number of 
items land in the (small) ring interval owned by any node. 
This attempt to load-balance can fail in two ways. First, the 
typical “random” partition of the address space among 
nodes is not completely balanced. Some nodes end up with 
a larger portion of the addresses and thus receive a larger 
portion of the randomly distributed items. 
Second, some applications may preclude the randomization 
of data items’ addresses. For example, to support range 
searching in a database application the items may need to 
be placed in a specific order, or even at specific addresses, 
on the ring. In such cases, we may find the items unevenly 
distributed in address space, meaning that balancing the 

address space among nodes is not adequate to balance the 
distribution of items among nodes. We give protocols to 
solve both of the load balancing challenges just described. 
Address-Space Balancing. Current distributed hash tables 
do not evenly partition the address space into which keys 
get mapped; some machines get a larger portion of it. Thus, 
even if keys are numerous and random, some machines 
receive more than their fair share, by as much as a factor of 
O(logn) times the average. 
To cope with this problem, many DHTs use virtual nodes: 
each real machine pretends to be several distinct machines, 
each participating independently in the DHT protocol. The 
machine’s load is thus determined by summing over several 
virtual nodes’, creating a tight concentration of (total) load 
near the average. As an example, the Chord DHT is based 
upon consistent hashing [8], which requires O(logn) virtual 
copies to be operated for every node. 
Virtual nodes have drawbacks. Besides increased storage 
requirements, they demand network bandwidth. In general, 
to maintain connectivity of the network, every (virtual) 
node must frequently ping its neighbors, make sure they are 
still alive, and replace them with new neighbors if not. 
Running multiple virtual nodes creates a multiplicative 
increase in the (very valuable) network bandwidth 
consumed for maintenance. 
Below, we will solve this problem by arranging for each 
node to activate only one of its O(logn) virtual nodes at any 
given time. The node will occasionally check its inactive 
virtual nodes, and may migrate to one of them if the 
distribution of load in the system has changed. Since only 
one virtual node is active, the real node need not pay the 
original Chord protocol’s multiplicative increase in space 
and bandwidth costs. As in the original Chord protocol, our 
scheme gives each real node only a small number of 
“legitimate” addresses on the Chord ring, preserving 
Chord’s (limited) protection against address spoofing by 
malicious nodes trying to disrupt the routing layer. (If each 
node could choose an arbitrary address, then a malicious 
node aiming to erase a particular item could take 
responsibility for that item’s key and then refuse to serve 
the item.) 
Another nice property of this protocol is that the 
“appropriate” state of the system (i.e., which virtual nodes 
are active), although random, is independent of the history 
of item and node arrivals and departures. This Markovian 
property means that the system can be analyzed as if it 
were static, with a fixed set of nodes and items; such 
analysis is generally much simpler than a dynamic, history-
dependent analysis. 
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Combining our load-balancing scheme with the Koorde 
routing protocol [7], we get a protocol that simultaneously 
offers (i) O(logn) degree per real node, (ii) 
O(logn/log logn) lookup hops, and (iii) constant factor load 
balance. Previous protocols could achieve any two of these 
but not all 3—generally speaking, achieving (iii) required 
operating O(logn) virtual nodes, which pushed the degree 
to O(log2 n) and failed to achieve (i). 
Item Balancing. A second load-balancing problem arises 
from certain database applications. A hash table 
randomizes the order of keys. This is problematic in 
domains for which order matters—for example, if one 
wishes to perform range searches over the data. This is one 
of the reasons binary trees are useful despite the faster 
lookup performance of hash tables. An order preserving 
dictionary structure cannot apply a randomized (and 
therefore load balancing) hash function to its keys; it must 
take them as they are. Thus, even if the address space is 
evenly distributed among the nodes, an uneven distribution 
of the keys (e.g., all keys near 0) may lead to all load being 
placed on one machine. 
In our work, we develop a load balancing solution for this 
problem. Unfortunately, the “limited assignments” 
approach discussed for key-space load balancing does not 
work in this case—it is easy to prove that if nodes can only 
choose from a few addresses, then certain load balancing 
tasks are beyond them. Our solution to this problem 
therefore allows nodes to move to arbitrary addresses; with 
this freedom we show that we can load balance an arbitrary 
distribution of items, without expending much cost in 
maintaining the load balance. 
Our scheme works through a kind of “work stealing” in 
which underloaded nodes migrate to portions of the address 
space occupied by too many items. The protocol is simple 
and practical, with all the complexity in its performance 
analysis. 
Preliminaries. We design our solutions in the context of 
the Chord DHT [15] but our ideas seem applicable to a 
broader range of DHT solutions. Chord uses Consistent 
Hashing to assign items to nodes, achieving key-space load 
balance using O(logn) virtual nodes per real node. On top 
of Consistent Hashing, Chord layers a routing protocol in 
which each node maintains a set of O(logn) carefully 
chosen “neighbors” that it uses to route lookups in O(logn) 
hops. Our modifications of Chord are essentially 
modifications of the Consistent Hashing protocol assigning 
items to nodes; we can inherit unchanged Chord’s neighbor 
structure and routing protocol. Thus, for the remainder of 
this paper, we ignore issues of routing and focus on the 
address assignment problem. 
In this paper, we will use the following notation. 
n = number of nodes in system 
N = number of items stored in system (usually N _n) 
`i = number of items stored at node i 
L = N/n = average (desired) load in the system 
As discussed above, Chord maps items and nodes to a ring. 
We represent this space by the unit interval [0,1) with the 
addresses 0 and 1 are identified, so all addresses are a 
number between 0 and 1. 
 

2. ADDRESS SPACE BALANCING 
We will now give a protocol that improves consistent 
hashing in that every node is responsible for a O(1/n) 
fraction of the address space with high probability (whp), 
without use of virtual nodes. This improves space and 
bandwidth usage by a logarithmic factor over traditional 
consistent hashing. The protocol is dynamic, with an 
insertion or deletion causing O(log logn) other nodes to 
change their positions. Each node has a fixed set of O(logn) 
possible positions (called “virtual nodes”); it chooses 
exactly one of those virtual nodes to become active at any 
time—this is the only node that it actually operates. A 
node’s set of virtual nodes depends only on the node itself 
(computed e.g. as hashes h(i,1),h(i,2), . . . ,h(i,c logn) of the 
node-id i), making malicious attacks on the network 
difficult. 
Ideal state: Given any set of active virtual nodes, each 
(possibly inactive) virtual node “spans” a certain range of 
addresses between itself and the succeeding active virtual 
node. Each real node has activated the virtual node that 
spans the minimal possible (under the ordering just 
defined) address.  
Note that the address space spanned by one virtual node 
depends on which other virtual nodes are active; that is why 
the above is a local optimality condition. Our protocol 
consists of the simple update rule that any node for which 
the local optimality condition is not satisfied, instead 
activates the virtual node that satisfies the condition. 
In other words, each node occasionally determines which 
of its O(logn) virtual nodes spans the smallest address, and 
activates that particular virtual node. Note that computing 
the “succeeding active node” for each of the virtual nodes 
can be done using standard Chord lookups. 
Theorem 1 The following statements are true for the above 
protocol, if every node has c logn virtual addresses. 
(i) For any set of nodes there is a unique ideal state. 
(ii) Given any starting state, the local improvements will 

eventually lead to this ideal state. 
(iii) In the ideal state of a network of n nodes, whp all 

neighboring pairs of nodes will be at most (2+e)/n 
apart. 

(iv) Upon inserting or deleting a node into an ideal state, in 
expectation at most O(log logn) nodes have to change 
their addresses for the system to again reach the ideal 
state. 

Proof Sketch: The unique ideal state can be constructed as 
follows. The virtual node immediately preceding address 1 
will be active, since its real-node owner has no better 
choice and cannot be blocked by any other active node 
from spanning address 1. That real node’s other virtual 
nodes will then be out of the running for activation. 
Of the remaining virtual nodes, the one most closely 
preceding 1/2 will become active for the same reason, etc. 
We continue in this way down the ordered list of addresses. 
This greedy process clearly defines the unique ideal state, 
showing (i). 
Claim (ii) can be shown by arguing that every local 
improvement reduces the “distance” of the current state to 
the ideal state (in an appropriately chosen metric). 
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 To prove (iii), recall how we constructed the ideal state for 
claim (i) above by successively assigning nodes to 
increasing addresses. In this process, suppose we are 
considering one of the first (1−e)n addresses. Consider the 
interval I of length e/n preceding this address. At least en of 
the real nodes have not yet been given a place on the ring. 
Among the possible cenlogn possible virtual positions of 
these nodes, with high probability one will land in the 
length-e/n interval I under consideration. So whp, for each 
of the first (1−e)n addresses in the order, the virtual node 
spanning that address will land within distance e/n 
preceding the address. Since these first (1−e)/n addresses 
break up the unit circle into intervals of size at most 2/n, 
claim (iii) follows. 
For (iv), it suffices to consider a deletion since the system 
is Markovian, i.e. the deletion and addition of a given node 
are symmetric and cause the same number of changes. 
Whenever a node claiming an address is deleted, its 
disappearance may reveal an address that some other node 
decides to claim, sacrificing its current spot, which may 
recursively trigger some other node to move. But each such 
migration means that the moving node has left behind no 
address as good as the one it is moving to claim. Note also 
that only a few nodes are close enough to any vacated 
address to claim it (distant ones will be shielded by some 
closer active node), and thus, as the address being vacated 
gets higher and higher in the order, it become less and less 
likely that any node that can take it will want it. We can 
show that after 
O(log logn) such moves, no node assigned to a higher 
address is likely to have a virtual node close to the vacated 
address, so the movements stop.  
We note that the above scheme is highly efficient to 
implement in the Chord P2P protocol, since one has direct 
access to the address of a successor. Moreover, the protocol 
can also function when nodes disappear without invoking a 
proper deletion protocol. By having every node 
occasionally check whether they should move, the system 
will eventually converge towards the ideal state. 
This can be done with insignificant overhead as part of the 
general maintenance protocols that have to run anyway to 
update the routing information of the Chord protocol. 
Related Work. Two protocols that achieve near optimal 
address-space load-balancing without the use of virtual 
nodes have recently been given [1, 11]. Our scheme 
improves upon them in three respects. 
First, in those protocols the address assigned to a node 
depends on the rest of the network, i.e. the address is not 
selected from a list of possible addresses that only depend 
on the node itself. This makes the protocols more 
vulnerable to malicious attacks. Second, in those protocols 
the address assignments depend on the construction history, 
making them harder to analyze. Third, their load balancing 
guarantees are only shown for the “insertions only” case, 
while we also handle deletions of nodes and items. 
  

3. ITEM BALANCING 
We have shown how to balance the address space, but 
sometimes this is not enough. Some applications, such as 
those aiming to support range-searching operations, need to 

specify a particular, non-random mapping of items into the 
address space. In this section, we consider a dynamic 
protocol that aims to balance load for arbitrary item 
distributions. To do so, we must sacrifice the previous 
protocol’s restriction of each node to a small number of 
virtual node locations—instead, each node is free to 
migrate anywhere. This is unavoidable: if each node is 
limited to a bounded number of possible locations, then for 
any n nodes we can enumerate all the addresses they might 
possibly occupy, take two adjacent ones, and address all the 
items in between them: this assigns all the items to one 
unfortunate node. 
Our protocol is randomized, and relies on the underlying 
P2P routing framework only insofar as it has to be able to 
contact “random” nodes in the system (in the full paper we 
show that this can be done even when the node distribution 
is skewed by the load balancing protocol). 
The protocol is the following (where e is any constant, 0 < 
e < 1). Recall that each node stores the items whose 
addresses fall between the node’s address and its 
predecessor’s address, and that ` j denotes the load on node 
j. 
Item balancing: Each node i occasionally contacts another 
node j at random. The nodes perform a load balancing 
operation, distinguishing two cases: 
Case 1: i equals j+1: In this case, i is the successor of j and 
the two nodes handle address intervals next to each other. 
Node j increases its address so that the (`i −` j)/2 items with 
lowest addresses get reassigned from node i to node j. Both 
nodes end up with load (`i+` j)/2.  
Case 2: i not equals j+1: If ` j+1 > `i, then we set i := j +1 
and go to case 1. Otherwise, node j moves between nodes 
i−1 and i to capture half of node i’s items. 
This means that node j’s items are now handled by its 
former successor, node j+1. 
To state the performance of the protocol, we need the 
concept of a half-life [9], which is the time it takes for half 
the nodes or half the items in the system to arrive or depart. 
Theorem 2 If each node contacts W(logn) other random 
nodes per half-life as well as whenever its own load 
doubles, then the above protocol has the following 
properties. 
(i) With high probability,  
(ii) The amortized number of items moved due to load 
balancing is O(1) per item insertion or deletion, and 
O(N/n) per node insertion or deletion.  
The proof of this theorem relies on the use of a potential 
function (some constant minus the entropy of the load 
distribution) that is large when the load is unbalanced. 
We show that item insertions and node departures cause 
only limited increases in the potential, while our balancing 
operation above causes a significant decrease in the 
potential if it is large. 
The traffic caused by the update queries necessary for the 
protocol is sufficiently small that it can be buried within the 
maintenance traffic necessary to keep the P2P network 
alive. (Contacting a random node for load information only 
uses a tiny message, and does not result in any data 
transfers per se.) Of greater importance for practical use is 
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the number of items transferred, which is optimal to within 
constants in an amortized sense. 
The protocol can also be used if items are replicated to 
improve fault-tolerance our scheme remains optimal within 
a constant factor. 
The above protocol can provide load balance even for data 
that cannot be hashed. In particular, given an ordered data 
set, we may wish to map it to the [0,1) interval in an order-
preserving fashion.  
RelatedWork. Randomized protocols for load balancing 
by moving items have received much attention in the 
research community. A P2P algorithm similar to ours was 
studied in [13]. However, their algorithm only works when 
the set of nodes and items are fixed (i.e. without insertions 
or deletions), and they give no provable performance 
guarantees, only experimental evaluations. 
A theoretical analysis of a similar protocol was given by 
Anagnostopoulos, Kirsch and Upfal [2], who also provide 
several further references. In their setting, however, items 
are assumed to be jobs that are executed at a fixed rate, i.e. 
items disappear from nodes at a fixed rate. Moreover, they 
analyze the average wait time for jobs, while we are more 
interested in the total number of items moved to achieve 
load balance. In recent independent work, Ganesan and 
Bawa [4] consider a load balancing scheme similar to ours 
and point out applications to range searches. However, their 
scheme relies on being able to quickly find the least and 
most loaded nodes in the system. It is not clear how to 
support this operation efficiently without creating heavy 
network traffic for these nodes with extreme load. 
Complex queries such as range searches are also an 
emerging research topic for P2P systems [5, 6]. An 
efficient range search data structure was recently given [3]. 
However, that work does not address the issue of load 
balancing the number of items per node, making the 
simplifying assumption that each node stores only one 
item. In that setting, the lookup times are O(logN) in terms 
of the number of items N, and not in terms of the number of 
nodes n. Also, O(logN) storage is used per data item, 
meaning a total storage of O(N logN), which is typically 
much worse than O(N +nlogn). 
  

4 CONCLUSION 
We have given several provably efficient load balancing 
protocols for distributed data storage in P2P systems. Our 
algorithms are simple, and easy to implement, so an 
obvious next research step should be a practical evaluation 
of these schemes. In addition, several concrete open 
problems follow from our work. First, it might be possible 
to further improve the consistent hashing scheme as 
discussed at the end of section 2. Second, our range search 
data structure does not easily generalize to more than one 
order.  
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